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Last Class We Covered

* Filel/O
— How to open a file
* For reading or writing
— How to write to a file
— How to close a file

* The join () function
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Any Questions from Last Time?
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Today’s Objectives

To discuss the details of “good code”
— Readability
— Adaptability

To
To

To

earn the “rules” of commenting
earn how to design a program
earn more about Incremental Programming
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Motivation

 We've talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

—What are some of them?

e There are two main reasons for these habits
— Readability
— Adaptability
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“Good Code” — Readability
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Readability

* Having your code be readable is important,
both for your sanity and anyone else’s

— Your TA's sanity is important

* Having highly readable code makes it easier to:
— Figure out what you’re doing while writing the code

— Figure out what the code is doing when you come
back to look at it a year |ater

— Have other people read and understand your code
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Improving Readability

* Improving readability of your code can be
accomplished in a number of ways

— Comments

— Meaningful variable names

— Breaking code down into functions

— Following consistent naming conventions
— Programming language choice

— File organization
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Readability Example

 What does the following code snippet do?
def nS(p, c¢):

1 = len(p)

if (1 >= 4):
c +=1
print(p)
if (1 >= 9):

return p
# FUNCTION CONTINUES...

 There isn’t much information to go on, is there?
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Readability Example

 What if | used meaningful variable names?
def nS(p, c¢):

1 = len(p)

if (1 >= 4):
c +=1
print(p)
if (1 >= 9):

return p
# FUNCTION CONTINUES. ..
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Readability Example

 What if | used meaningful variable names?

def nextState (password, count):
length = len (password)
if (length >= 4):
count +=1
print (password)
if (length >= 9):
return password
# FUNCTION CONTINUES...
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Readability Example

* And replaced the magic numbers with constants?

def nextState (password, count):
length = len (password)
if (length >= 4):
count +=1
print (password)
if (length >= 9):
return password
# FUNCTION CONTINUES...
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Readability Example

* And replaced the magic numbers with constants?

def nextState (password, count):
length = len (password)
if (length >= MIN_LENGTH):
count += 1
print (password)
if (length >= MAX_LENGTH):
return password
# FUNCTION CONTINUES...
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Readability Example

 And added vertical space?

def nextState (password, count):
length = len (password)
if (length >= MIN_LENGTH):
count += 1
print (password)
if (length >= MAX_LENGTH):
return password
# FUNCTION CONTINUES...
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Readability Example

 And added vertical space?

def nextState (password, count):
length = len (password)

if (length >= MIN LENGTH) :
count += 1
print (password)

if (length >= MAX LENGTH) :
return password
# FUNCTION CONTINUES...
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Readability Example

* Maybe even some comments?

def nextState (password, count):
length = len (password)

if (length >= MIN LENGTH) :
count += 1
print (password)

if (length >= MAX LENGTH) :
return password
# FUNCTION CONTINUES...
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Readability Example

* Maybe even some comments?

def nextState (password, count):
length = len (password)

# if long enough, count as a password
if (length >= MIN LENGTH) :

count += 1

print (password)

# if max length, don't do any more
if (length >= MAX LENGTH) :
return password
# FUNCTION CONTINUES...
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Readability Example

* Now the purpose of the code is a bit clearer!

— You can see how small, simple changes increase
the readability of a piece of code

* This is actually part of a function that creates a list of
the passwords for a swipe-based login system on an
Android smart phone

* Dr. Gibson wrote a paper on this, available here
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http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

Commenting
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Commenting is an “Art”

 Though it may sound pretentious, it’s true

e There are NO hard and fast rules for when a
piece of code should be commented

— Only guidelines

— NOTE: This doesn’t apply to required comments
like file headers and function headers!
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General Guidelines

* |f you have a complex conditional, give a brief
overview of what it accomplishes

# check if car fits customer criteria
if color == "black" and int (numDoors) > 2 \
and float(price) < 27000:

* |f you did something you think was clever,
comment that piece of code

— So that “future you” will understand it!
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General Guidelines

* |f you have a complex conditional, give a brief
overview of what it accomplishes

# check if car fits customer criteria
if color == "black" and int (numDoors) > 2®

and float(price) | Thjs hackslash symbol tells
Python that the code will

e |f you did Something /e continue on the next line.
comment that piece of code

— So that “future you” will understand it!
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General Guidelines

e Don’t write obvious comments

# iterate over the list

for item in mylList:

 Don’t comment every line

# initialize the loop variable

choice =1
# loop until user chooses 0

while choice '= 0:
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General Guidelines

e Do comment “blocks” of code

# calculate tip and total (if a party is
# large, set percentage to a minimum)
if (numGuests > LARGE PARTY) :
percent = MIN TIP
tip = bill * percent
total = bill + tip
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General Guidelines

* Do comment nested loops and conditionals

listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

# iterate over both lists, checking to see if each
# fibonacci number is also in the prime list
for numl in listFib:
for num2 in listPrime:
if (numl == num?2) :

print (numl, "is both a prime and a \
Fibonacci number!")

www.umbc.edu



General Guidelines

* Do comment very abbreviated variables names
(especially those used for constants)

— You can even put the comment at the end of the line!

I
=

minimum choice at menu
maximum choice at menu
menu choice to exit (stop)

= "x" player 1's marker

|
o)

8
H H H= H= I

player 2's marker
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“Good Code” — Adaptability
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Adaptability

e Often, what a program is supposed to do
evolves and changes as time goes on

— Well-written flexible programs can be easily
altered to do something new

— Rigid, poorly written programs often take a lot of
work to modify

* When coding, keep in mind that you might
want to change or extend something later
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Adaptability: Example

e Remember how we talked about not using
“magic numbers” (or strings) in our code?

Bad: Good:
def makeSquareGrid() : def makeSquareGrid():
temp = [] temp = []
for i in range (0, 10): for i in range (0, GRID SIZE):
temp.append ([0] * 10) temp.append ([0] * GRID SIZE)
return temp return temp

0 and 1 are not “magic”
numbers — why?
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Adaptability: Example

* We can change makeSquareGrid ()
to be an even more flexible function

Better: Good:
def makeSquareGrid(size): def makeSquareGrid():
temp = [] temp = []
for i in range (0, size): for i in range (0, GRID SIZE):
temp.append ([0] * size) temp.append ([0] * GRID SIZE)
return temp return temp

# call makeSquareGrid
grid = makeSquareGrid (GRID SIZE)
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Solving Problems
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Simple Algorithms

* |nput

— What information we will be given, or will ask for

* Process

— The steps we will take to reach our specific goal

* Output

— The final product that we will produce

32 www.umbc.edu



More Complicated Algorithms

 We can apply the same principles of input,
process, output to more complicated
algorithms and programs

* There may be multiple sets of input/output,
and we may perform more than one process
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Design Example
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Questions when Designing

 What is the “big picture” problem?

* What sort of tasks do you need to handle?
— What functions would you make?
— How would they interact?
— What does each function take in and return?

* What will yourmain () look like?
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In-Class Example

* A program that allows two human players to
play battleship, alternating turns

e Questions to consider:

* What do you want your board to look like?

How do you want the user to play, or to select
where they’ll attack next?
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In-Class Example

* A program that allows two human players to
play battleship, alternating turns

* Designh choices to consider:
— What do you want your board to look like?

— How do you want the user to play, or to select
where they’ll attack next?

— How are you going to store the board?
— What functions will you need?
— What constants will you need?
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Incremental Development
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What is Incremental Development?

* Developing your program in small increments

Al S

Program a small piece of the program
Run and test your program

Ensure the recently written code works
Address any errors and fix any bugs
Return to step 1
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Why Use Incremental Development?

* Incremental development:
—Makes a large project more manageable
— Leads to higher quality code
—Makes it easier to find and correct errors
—|s faster for large projects

* May seem like you’re taking longer since you
test at each step, but faster in the long run
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Debugging Woes

Writing code is easy...
Writing code that works correctly is HARD

Sometimes the hardest part of debugging

IS

finding out where the error is coming from

— And solving it is the easy part (sometimes!)

If you only wrote one function, you can start

by looking there for the error
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Announcements

* Project 2 out on Blackboard
— Design due Friday, April 14th @ 8:59:59 PM
— Project due Friday, April 21st @ 8:59:59 PM
— Uses 3D lists and file I/O

e Final exam is when?
— Friday, May 19th from 6 to 8 PM

e Survey #2 will be coming out soon
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