
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 18 – Program Design (Continued)

www.umbc.edu

Last Class We Covered

• File I/O

– How to open a file

• For reading or writing

– How to write to a file

– How to close a file

• The join() function

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To discuss the details of “good code”

–Readability

–Adaptability

• To learn the “rules” of commenting

• To learn how to design a program

• To learn more about Incremental Programming

4

www.umbc.edu

Motivation

• We’ve talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

–What are some of them?

• There are two main reasons for these habits

–Readability

–Adaptability

5

www.umbc.edu6

“Good Code” – Readability

www.umbc.edu

Readability

• Having your code be readable is important,
both for your sanity and anyone else’s

– Your TA’s sanity is important

• Having highly readable code makes it easier to:

– Figure out what you’re doing while writing the code

– Figure out what the code is doing when you come
back to look at it a year later

– Have other people read and understand your code

7

www.umbc.edu

Improving Readability

• Improving readability of your code can be
accomplished in a number of ways

– Comments

– Meaningful variable names

– Breaking code down into functions

– Following consistent naming conventions

– Programming language choice

– File organization

8

www.umbc.edu

Readability Example

• What does the following code snippet do?
def nS(p, c):

l = len(p)

if (l >= 4):

c += 1

print(p)

if (l >= 9):

return p

FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

9

www.umbc.edu

Readability Example

• What if I used meaningful variable names?
def nS(p, c):

l = len(p)

if (l >= 4):

c += 1

print(p)

if (l >= 9):

return p

FUNCTION CONTINUES...

10

www.umbc.edu

Readability Example

• What if I used meaningful variable names?
def nextState(password, count):

length = len(password)

if (length >= 4):

count += 1

print(password)

if (length >= 9):

return password

FUNCTION CONTINUES...

11

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

length = len(password)

if (length >= 4):

count += 1

print(password)

if (length >= 9):

return password

FUNCTION CONTINUES...

12

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password

FUNCTION CONTINUES...

13

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password

FUNCTION CONTINUES...

14

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password

FUNCTION CONTINUES...

15

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

length = len(password)

if (length >= MIN_LENGTH):

count += 1

print(password)

if (length >= MAX_LENGTH):

return password

FUNCTION CONTINUES...

16

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

length = len(password)

if long enough, count as a password

if (length >= MIN_LENGTH):

count += 1

print(password)

if max length, don't do any more

if (length >= MAX_LENGTH):

return password

FUNCTION CONTINUES...

17

www.umbc.edu

Readability Example

• Now the purpose of the code is a bit clearer!

– You can see how small, simple changes increase
the readability of a piece of code

• This is actually part of a function that creates a list of
the passwords for a swipe-based login system on an
Android smart phone

• Dr. Gibson wrote a paper on this, available here

18

http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

www.umbc.edu19

Commenting

www.umbc.edu

Commenting is an “Art”

• Though it may sound pretentious, it’s true

• There are NO hard and fast rules for when a
piece of code should be commented

– Only guidelines

– NOTE: This doesn’t apply to required comments
like file headers and function headers!

20

www.umbc.edu

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

21

www.umbc.edu

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

22

This backslash symbol tells
Python that the code will
continue on the next line.

www.umbc.edu

General Guidelines

• Don’t write obvious comments
iterate over the list

for item in myList:

• Don’t comment every line
initialize the loop variable

choice = 1

loop until user chooses 0

while choice != 0:

23

www.umbc.edu

General Guidelines

• Do comment “blocks” of code

calculate tip and total (if a party is

large, set percentage to a minimum)

if (numGuests > LARGE_PARTY):

percent = MIN_TIP

tip = bill * percent

total = bill + tip

24

www.umbc.edu

General Guidelines

• Do comment nested loops and conditionals
listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

iterate over both lists, checking to see if each

fibonacci number is also in the prime list

for num1 in listFib:

for num2 in listPrime:

if (num1 == num2):

print(num1, "is both a prime and a \

Fibonacci number!")

25

www.umbc.edu

General Guidelines

• Do comment very abbreviated variables names
(especially those used for constants)

– You can even put the comment at the end of the line!

MIN_CH = 1

MAX_CH = 5

MENU_EX = 5

P1_MARK = "x"

P2_MARK = "o"

26

minimum choice at menu

maximum choice at menu

menu choice to exit (stop)

player 1's marker

player 2's marker

www.umbc.edu27

“Good Code” – Adaptability

www.umbc.edu

Adaptability

• Often, what a program is supposed to do
evolves and changes as time goes on

– Well-written flexible programs can be easily
altered to do something new

– Rigid, poorly written programs often take a lot of
work to modify

• When coding, keep in mind that you might
want to change or extend something later

28

www.umbc.edu

Adaptability: Example

• Remember how we talked about not using
“magic numbers” (or strings) in our code?

29

Bad:

def makeSquareGrid():

temp = []

for i in range(0, 10):

temp.append([0] * 10)

return temp

Good:

def makeSquareGrid():

temp = []

for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)

return temp

0 and 1 are not “magic”
numbers – why?

www.umbc.edu

Adaptability: Example

• We can change makeSquareGrid()

to be an even more flexible function

30

Better:

def makeSquareGrid(size):

temp = []

for i in range(0, size):

temp.append([0] * size)

return temp

call makeSquareGrid

grid = makeSquareGrid(GRID_SIZE)

Good:

def makeSquareGrid():

temp = []

for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)

return temp

www.umbc.edu31

Solving Problems

www.umbc.edu

Simple Algorithms

• Input

– What information we will be given, or will ask for

• Process

– The steps we will take to reach our specific goal

• Output

– The final product that we will produce

32

www.umbc.edu

More Complicated Algorithms

• We can apply the same principles of input,
process, output to more complicated
algorithms and programs

• There may be multiple sets of input/output,
and we may perform more than one process

33

www.umbc.edu34

Design Example

www.umbc.edu

Questions when Designing

• What is the “big picture” problem?

• What sort of tasks do you need to handle?

– What functions would you make?

– How would they interact?

– What does each function take in and return?

• What will your main() look like?

35

www.umbc.edu

In-Class Example

• A program that allows two human players to
play battleship, alternating turns

• Questions to consider:

• What do you want your board to look like?
How do you want the user to play, or to select
where they’ll attack next?

36

www.umbc.edu

In-Class Example

• A program that allows two human players to
play battleship, alternating turns

• Design choices to consider:

– What do you want your board to look like?

– How do you want the user to play, or to select
where they’ll attack next?

– How are you going to store the board?

– What functions will you need?

– What constants will you need?
37

www.umbc.edu38

Incremental Development

www.umbc.edu

What is Incremental Development?

• Developing your program in small increments

1. Program a small piece of the program

2. Run and test your program

3. Ensure the recently written code works

4. Address any errors and fix any bugs

5. Return to step 1

39

www.umbc.edu

Why Use Incremental Development?

• Incremental development:

–Makes a large project more manageable

– Leads to higher quality code

–Makes it easier to find and correct errors

– Is faster for large projects

• May seem like you’re taking longer since you
test at each step, but faster in the long run

40

www.umbc.edu

Debugging Woes

• Writing code is easy...

• Writing code that works correctly is HARD

• Sometimes the hardest part of debugging is
finding out where the error is coming from

– And solving it is the easy part (sometimes!)

• If you only wrote one function, you can start
by looking there for the error

41

www.umbc.edu

Announcements

• Project 2 out on Blackboard

– Design due Friday, April 14th @ 8:59:59 PM

– Project due Friday, April 21st @ 8:59:59 PM

– Uses 3D lists and file I/O

• Final exam is when?

– Friday, May 19th from 6 to 8 PM

• Survey #2 will be coming out soon

42

