CMSC201
Computer Science | for Majors

Lecture 18 — Program Design (Continued)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted www.umbc.edu

Last Class We Covered

* Filel/O
— How to open a file
* For reading or writing
— How to write to a file
— How to close a file

* The join () function

2 www.umbc.edu

Any Questions from Last Time?

3 www.umbc.edu

Today’s Objectives

To discuss the details of “good code”
— Readability
— Adaptability

To
To

To

earn the “rules” of commenting
earn how to design a program
earn more about Incremental Programming

www.umbc.edu

Motivation

 We've talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

—What are some of them?

e There are two main reasons for these habits
— Readability
— Adaptability

5 www.umbc.edu

“Good Code” — Readability

6 www.umbc.edu

Readability

* Having your code be readable is important,
both for your sanity and anyone else’s

— Your TA's sanity is important

* Having highly readable code makes it easier to:
— Figure out what you’re doing while writing the code

— Figure out what the code is doing when you come
back to look at it a year |ater

— Have other people read and understand your code

7 www.umbc.edu

Improving Readability

* Improving readability of your code can be
accomplished in a number of ways

— Comments

— Meaningful variable names

— Breaking code down into functions

— Following consistent naming conventions
— Programming language choice

— File organization

8 www.umbc.edu

Readability Example

 What does the following code snippet do?
def nS(p, c¢):

1 = len(p)

if (1 >= 4):
c +=1
print(p)
if (1 >= 9):

return p
FUNCTION CONTINUES...

 There isn’t much information to go on, is there?

9 www.umbc.edu

Readability Example

 What if | used meaningful variable names?
def nS(p, c¢):

1 = len(p)

if (1 >= 4):
c +=1
print(p)
if (1 >= 9):

return p
FUNCTION CONTINUES. ..

10 www.umbc.edu

Readability Example

 What if | used meaningful variable names?

def nextState (password, count):
length = len (password)
if (length >= 4):
count +=1
print (password)
if (length >= 9):
return password
FUNCTION CONTINUES...

11 www.umbc.edu

Readability Example

* And replaced the magic numbers with constants?

def nextState (password, count):
length = len (password)
if (length >= 4):
count +=1
print (password)
if (length >= 9):
return password
FUNCTION CONTINUES...

12 www.umbc.edu

Readability Example

* And replaced the magic numbers with constants?

def nextState (password, count):
length = len (password)
if (length >= MIN_LENGTH):
count += 1
print (password)
if (length >= MAX_LENGTH):
return password
FUNCTION CONTINUES...

13 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Readability Example

 And added vertical space?

def nextState (password, count):
length = len (password)
if (length >= MIN_LENGTH):
count += 1
print (password)
if (length >= MAX_LENGTH):
return password
FUNCTION CONTINUES...

14 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Readability Example

 And added vertical space?

def nextState (password, count):
length = len (password)

if (length >= MIN LENGTH) :
count += 1
print (password)

if (length >= MAX LENGTH) :
return password
FUNCTION CONTINUES...

15 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Readability Example

* Maybe even some comments?

def nextState (password, count):
length = len (password)

if (length >= MIN LENGTH) :
count += 1
print (password)

if (length >= MAX LENGTH) :
return password
FUNCTION CONTINUES...

16 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Readability Example

* Maybe even some comments?

def nextState (password, count):
length = len (password)

if long enough, count as a password
if (length >= MIN LENGTH) :

count += 1

print (password)

if max length, don't do any more
if (length >= MAX LENGTH) :
return password
FUNCTION CONTINUES...

17 www.umbc.edu

Readability Example

* Now the purpose of the code is a bit clearer!

— You can see how small, simple changes increase
the readability of a piece of code

* This is actually part of a function that creates a list of
the passwords for a swipe-based login system on an
Android smart phone

* Dr. Gibson wrote a paper on this, available here

18 www.umbc.edu

http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

Commenting

19 www.umbc.edu

Commenting is an “Art”

 Though it may sound pretentious, it’s true

e There are NO hard and fast rules for when a
piece of code should be commented

— Only guidelines

— NOTE: This doesn’t apply to required comments
like file headers and function headers!

20 www.umbc.edu

21

General Guidelines

* |f you have a complex conditional, give a brief
overview of what it accomplishes

check if car fits customer criteria
if color == "black" and int (numDoors) > 2 \
and float(price) < 27000:

* |f you did something you think was clever,
comment that piece of code

— So that “future you” will understand it!

www.umbc.edu

22

General Guidelines

* |f you have a complex conditional, give a brief
overview of what it accomplishes

check if car fits customer criteria
if color == "black" and int (numDoors) > 2®

and float(price) | Thjs hackslash symbol tells
Python that the code will

e |f you did Something /e continue on the next line.
comment that piece of code

— So that “future you” will understand it!

www.umbc.edu

General Guidelines

e Don’t write obvious comments

iterate over the list

for item in mylList:

 Don’t comment every line

initialize the loop variable

choice =1
loop until user chooses 0

while choice '= 0:

23 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

24

General Guidelines

e Do comment “blocks” of code

calculate tip and total (if a party is
large, set percentage to a minimum)
if (numGuests > LARGE PARTY) :
percent = MIN TIP
tip = bill * percent
total = bill + tip

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

25

General Guidelines

* Do comment nested loops and conditionals

listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

iterate over both lists, checking to see if each
fibonacci number is also in the prime list
for numl in listFib:
for num2 in listPrime:
if (numl == num?2) :

print (numl, "is both a prime and a \
Fibonacci number!")

www.umbc.edu

General Guidelines

* Do comment very abbreviated variables names
(especially those used for constants)

— You can even put the comment at the end of the line!

I
=

minimum choice at menu
maximum choice at menu
menu choice to exit (stop)

= "x" player 1's marker

|
o)

8
H H H= H= I

player 2's marker

26 www.umbc.edu

“Good Code” — Adaptability

27 www.umbc.edu

28

Adaptability

e Often, what a program is supposed to do
evolves and changes as time goes on

— Well-written flexible programs can be easily
altered to do something new

— Rigid, poorly written programs often take a lot of
work to modify

* When coding, keep in mind that you might
want to change or extend something later

www.umbc.edu

Adaptability: Example

e Remember how we talked about not using
“magic numbers” (or strings) in our code?

Bad: Good:
def makeSquareGrid() : def makeSquareGrid():
temp = [] temp = []
for i in range (0, 10): for i in range (0, GRID SIZE):
temp.append ([0] * 10) temp.append ([0] * GRID SIZE)
return temp return temp

0 and 1 are not “magic”
numbers — why?

29 www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Adaptability: Example

* We can change makeSquareGrid ()
to be an even more flexible function

Better: Good:
def makeSquareGrid(size): def makeSquareGrid():
temp = [] temp = []
for i in range (0, size): for i in range (0, GRID SIZE):
temp.append ([0] * size) temp.append ([0] * GRID SIZE)
return temp return temp

call makeSquareGrid
grid = makeSquareGrid (GRID SIZE)

30 www.umbc.edu

Solving Problems

31 www.umbc.edu

Simple Algorithms

* |nput

— What information we will be given, or will ask for

* Process

— The steps we will take to reach our specific goal

* Output

— The final product that we will produce

32 www.umbc.edu

More Complicated Algorithms

 We can apply the same principles of input,
process, output to more complicated
algorithms and programs

* There may be multiple sets of input/output,
and we may perform more than one process

33 www.umbc.edu

Design Example

34 www.umbc.edu

Questions when Designing

 What is the “big picture” problem?

* What sort of tasks do you need to handle?
— What functions would you make?
— How would they interact?
— What does each function take in and return?

* What will yourmain () look like?

35 www.umbc.edu

36

In-Class Example

* A program that allows two human players to
play battleship, alternating turns

e Questions to consider:

* What do you want your board to look like?

How do you want the user to play, or to select
where they’ll attack next?

www.umbc.edu

In-Class Example

* A program that allows two human players to
play battleship, alternating turns

* Designh choices to consider:
— What do you want your board to look like?

— How do you want the user to play, or to select
where they’ll attack next?

— How are you going to store the board?
— What functions will you need?
— What constants will you need?

37 www.umbc.edu

Incremental Development

38 www.umbc.edu

39

What is Incremental Development?

* Developing your program in small increments

Al S

Program a small piece of the program
Run and test your program

Ensure the recently written code works
Address any errors and fix any bugs
Return to step 1

www.umbc.edu

Why Use Incremental Development?

* Incremental development:
—Makes a large project more manageable
— Leads to higher quality code
—Makes it easier to find and correct errors
—|s faster for large projects

* May seem like you’re taking longer since you
test at each step, but faster in the long run

40 www.umbc.edu

41

Debugging Woes

Writing code is easy...
Writing code that works correctly is HARD

Sometimes the hardest part of debugging

IS

finding out where the error is coming from

— And solving it is the easy part (sometimes!)

If you only wrote one function, you can start

by looking there for the error

www.umbc.edu

Announcements

* Project 2 out on Blackboard
— Design due Friday, April 14th @ 8:59:59 PM
— Project due Friday, April 21st @ 8:59:59 PM
— Uses 3D lists and file I/O

e Final exam is when?
— Friday, May 19th from 6 to 8 PM

e Survey #2 will be coming out soon

42

www.umbc.edu

